
Marta E. Hanson

[Marta Hanson is Associate Professor of the history of medicine in East Asia, Department of the History of Medicine, Johns Hopkins University, Senior Co-editor of Asian Medicine: Tradition & Modernity, and current President of ISHEASTM (2015-2019). She wrote Speaking of Epidemics in Chinese Medicine: Disease and the Geographic Imagination in Late Imperial China, London: Routledge, 2011. She is currently writing a book with the working title “Understanding is Within One’s Grasp:” Bodily Arts of Memory, Healing Practices, and the Temporal Imagination in Late Imperial China. Contact: mhanson4@jhmi.edu]

Established in 1982 by François Jullien, the now 38 issues of Extrême-Orient Extrême-Occident have covered a wide range of interesting themes and questions related to East Asian history—canonization, the real and the imagined, numbers, custom and the norm, encyclopedias, stars and astrology, epidemics, war—just to name a few. Its systematic structure has enabled each issue to both examine the chosen theme from various scholars’ perspectives across Extrême-Orient and conclude with a “regard extérieur” which offers an “external perspective” on the same theme from a scholar representing the Extrême-Occident. This explains the title of the journal and why it is unique in its structured way of putting scholars of East Asia in conversation with their European colleagues. It is also a bilingual journal that regularly publishes articles in both French and English; the articles’ abstracts are also provided in English, French, and Chinese. Although each issue largely focuses on research on East Asia, it always concludes with a response from a scholar (or scholars) positioned outside of the Extrême-Orient.

This same structure also holds true for the recent issue on “Human Mobility and the Circulation of Technical Knowledge (17th-19th centuries)” reviewed here. Comprised of five articles (three in French, two in English) it concludes with two essays on “regards extérieurs” from a South Asianist (in English) and an Europeanist (in French). The articles are organized into four sub-sections—‘Routes through Chinese Space,’ ‘Diplomatic Relations and the Circulation of Books,’ ‘Industrialisation and Innovation,’ and ‘External Perspectives.’ This special issue is part of a larger research project sponsored by the French National Research Agency on “Itinéraires individuels et circulation des savoirs scientifiques et techniques en Chine mo-
derne (XVe-XXe siècles)” — “Individual itineraries and the circulation of scientific and technical knowledge in modern China (16th-20th centuries).”

As both director of this research project and editor of this issue, Catherine Jami introduces the major research themes, provides a historiography of the “geography of scientific knowledge” in East Asia, and summarizes the main contributions of the following seven essays. Part of the broader shift away from research on the circulation of scientific knowledge between large civilization units—such as Extrême-Orient Extrême-Occident—these articles all spatially situate the circulation of scientific knowledge and techniques within the East Asian sphere in Nanjing (provincial capital of Jiangsu), Fujian, Jiangxi, and Hebei provinces, Beijing as imperial capital, the royal Chosŏn court in Seoul, Pusan (southern end of modern South Korea), Tsushima island, Nagasaki, Edo (modern-day Tokyo), northern Kyūshū, Kyoto, Osaka, and even Belgium and New England. Their focus on the East Asian geography of science, technology, and medicine contributes to a finer granulated understanding of both considerable diversity within the older civilizational categories and fundamental dynamism of scientific and technical knowledge for which location, mobility, and circulation were constitutive.

The ‘Routes through Chinese Space’ sub-section features two articles on seventeenth-century contemporaries in China whose respective careers and publications illustrate well the central theme of this issue on the geography of knowledge. Catherine Jami’s article on “Mei Wen’s (1633-1721) Career and the Status of the Mathematical Science in Scholarly Learning” focuses on the most renowned Chinese mathematician of the period. Nanjing, as the provincial capital of Jiangsu for the civil service exams, was where Mei found his intellectual community, textual resources, patrons, and publishers. But Beijing, as the center of imperially patronized mathematics, was where Mei had new opportunities to work on imperial publications that allowed him to synthesize western-Chinese mathematics, integrating at the end of his career. Wu Huiyi’s study of “The Translations of François-Xavier Dentrecollès (1664-1741), Missionary in China: Locality and the Circulation of Knowledge” finds that the two main places where Dentrecollès was based—Jiangxi province (c. 1701-1719), where he famously worked out the Chinese process of making Jingdezhen porcelain, and then Beijing (1720-1741), where he was supervisor of the Jesuit residence with greater access to more current European scholarship—significantly influenced what kind of technical knowledge he had access to, newly produced, and how it circulated. Based in different provinces as well

1 For examples of works related to this project in East Asian history of science, technology, and medicine, see Bretelle-Establet 2010, Jami (forthcoming).

2 For a French perspective on the theoretical bases for this method outside of East Asia, see Jacob 2007, 2011.
as separate socio-intellectual networks the center-periphery axis of Nanjing-Beijing for Mei Wending and Jiangxi-Beijing for Dentrecolles nonetheless similarly demonstrate how access to different textual, institutional, and human resources in Beijing, opened up new possibilities for their scientific work even though neither of them ever worked directly for the emperor within the imperial Qing court as did many of their better known Chinese literati and Jesuit contemporaries.

The two articles in the sub-section on ‘Diplomatic Relations and the Circulation of Books’ turn attention from provincial-capital dynamics of knowledge production within China to the role of diplomacy and specific embassies in the transmission of scientific knowledge between Korea, China, and Japan. Lower-level astronomer- emissaries are the focus of Lim Jongtae’s illuminating “Journeys of the Modest Astronomers: Korean Astronomers’ Missions to Beijing in the Seventeenth and Eighteenth Centuries.” Faced with the dilemma of needing to align their calendar with that of the Chinese imperial court while at the same time being denied access to the new computation techniques needed to achieve this they tackled many technical and linguistic hurdles as well as diplomatic ones to master them. Here again the Qing court in Beijing is a knowledge center to which the Chosŏn royal court not only paid tribute, but also what amounted to bribes to gain access to texts, techniques, and tutors to master the new astronomy.

Mathias Vigouroux’s “Book Trade and Diplomacy: the Transmission of Medical Knowledge Related to Acupuncture and Moxibustion from China and Korea to Japan (1603-1868)” moves the narrative from Chosŏn astronomers selling native ginseng to support their scientific missions in Beijing to Japanese shoguns requesting that the Chosŏn bureaucracy send medical embassies to discuss medical issues with their physicians and treat local monks and daimyo elites. The famous 31 dialogues with Japanese physicians (1636-1764) reveal where textual transmission broke down and Japanese physicians sought to acquire directly specific needling and puncturing skills as well as doctrinal insights from their contemporary Chosŏn physicians. Lim’s and Vigouroux’s studies thus both demonstrate one of Jami’s main points that scientific and technical knowledge differed from the better-studied classical Chinese philosophy in the role that person-to-person training played to acquire skills of computation as much as in acupuncture and moxibustion.3

Although the third subsection on ‘Industrialisation and Innovation’ features just the one article by Aleksandra Kobiliski on “Shimomura Kōtarō (1863-1937) and the Circulation of Technical Knowledge between the

3 For comparable examples of the importance of apprenticeship and person-to-person transmission related to astrology in East and Southeast Asia, see especially articles by Hayek and Homola in Robert (ed.) 2013 (i.e., the previous issue #35 of EO-EO).
United States, Japan, and Belgium” it is most closely related to the themes the first external commentator, Dhruv Raina, raised in his contribution “Revisiting Social Theory and History of Science in Early Modern South Asia and Colonial India.” Raina wrote that “the study on the Japanese engineer intersects most closely with the issues that surface in my own work” (p. 193). This is the case in terms of appropriation/assimilation and legitimation of new knowledge—namely related to the innovation (instead of reproduction) and redesigning (rather than transferring) of technological systems that Shimomura’s career trajectory from chemistry teacher to chemical engineer exemplified. Raina goes further by making a case for the analytical concept of “engraftment”—meaning a technology of translation from one tradition (i.e., European mathematics) to another (i.e., Indian mathematics) in his case study of mathematics education in colonial India.

Framing his “regard extérieur” as a broader engagement with recent social theory and the history of science, Raina both puts these two articles in conversation with each other (as much as are the previous two sets of paired articles) and similarly complicates the social history of scientific knowledge in South Asia before colonialism that supports what he calls a South Asian modernity more or less concurrent with, and arguably connected to, or entangled with, European modernity. His essay brings out the creativity and innovation as a productive dimension of the “Brokered World” in which these “itinerant intellectuals” and “go-betweens”—such as the mathematician-editor, scientist-missionary, astronomer-emissaries, physician-diplomats, and industrial engineer—featured in the preceding five articles realized their careers and made their scientific contributions.

Titled “La loupe et le miroir” (“The Magnifying Glass and the Mirror”), the second “regard extérieur,” by Director of Research at CNRS and Director of Studies at EHESS Christian Jacob, creates a vision of the whole greater than the sum of the six separate perspectives. He structured his response around seven core questions—Where does knowledge reside? How do different forms of social interaction form distinct types of knowledge? What is thus the morphology of knowledge and their “plasticity” or range of genres? When is knowledge either closed or open? What are the different discursive genres and scales of the history of knowledge? What are the geographies and spaces of knowledge? What are the possibilities of connected and parallel histories of knowledge? Jacob thereby created a conceptual mirror that reflects the much broader questions that the magnifying glass approach of these locally placed, historically situated, and biographi-

---

4 For arguments supporting “connected histories” for the early modern history of science, see Subrahmanyam 2007.
5 For late eighteenth/early nineteenth-century examples of the “Brokered World,” see Schaffer et al. (eds.) 2009.
cally informed micro-histories of “human mobility and the circulation of technical knowledge” in East Asia bring into sharp focus.

References


